
CS5643 Final Project: Modeling leaf venation patterns for use in 3D printing

Bryan N. Peele∗

Ph.D. Student, Mechanical Engineering, Cornell University

Figure 1: Venation patterns created by changing the vein growth relative to leaf growth where r = Vein Growth Rate/Leaf Growth Rate. From
left to right: (a) r = 0.5, (b) r = 1.5, (c) r = 3.5, and (d) 5 = 5.5

Abstract

Advances in 3D printing have led to a class of machines that can
produce architectures of unprecedented complexity. However, cur-
rent computer aided design (CAD) tools have left a gap in the abil-
ity to effectively design the intricate structures made possible with
these technologies. By turning to nature, we can derive algorithms
to procedurally generate complex structures through computer sim-
ulation. For this project, I apply biologically inspired algorithms to
generate 3D architectures that can be 3D printed. Building on the
work of Runions et al. [2005], I have simulated leaf venation in or-
der to create visualizations as well as physical models. By adjusting
a handful of system parameters, I use the same model to generate
a large array of venation patterns. Because the model incorporates
a degree of randomness, it is possible to efficiently create an ar-
bitrarily large number of unique structures that are all qualitatively
similar. In order to show the viability of physically fabricating these
models, I 3D print a sample from this set using stereolithography.

Keywords: morphogenesis, leaf venation, biological growth, 3D
printing, stereolithography

1 Introduction

With the onset of fast and affordable 3D printing technologies, the
geometric complexity of manufactured objects is no longer limited
by fabrication tools. 3D printing offers the ability to create arbitrar-
ily complex geometries using technologies such as fused-deposition
modelling, stereolithography and selective laser sintering. How-
ever, traditional computer aided design (CAD) tools are built for
conventional fabrication tools such as mills and lathes.

3D printing, however, allows entire new classes of geometric prim-
itives. We are no longer restricted to holes that can be drilled or
revolved structures that can be turned on a lathe. Instead, it is now
possible to create complex lattices and internal voids that could not
me made without the use of 3D printing. Moreover, due to reduced
material usage, these complex structures can be cheaper and faster
to produce.

This broad design space remains largely unexplored, due largely to

∗e-mail:bnp26@cornell.edu

a lack of CAD tools that allow the user to generate complex struc-
tures using high level commands. These new design tools have the
potential to allow designs of both aesthetic and pragmatic value.
Designs that mimic the complexity of natural systems may be beau-
tiful while also providing lightweight structural lattices.

2 Related Work

Many researchers are now applying the methods of computer
graphics and simulation to better understand how geometric com-
plexity arises in nature. Specifically, researchers at the Biological
Modeling and Visualization Lab at the University of Calgary have
studied diverse systems such as bark patterning in grasstrees [Dale
et al. 2014], fruit propagation in apple trees [Costes et al. 2008],
and growth of tree branches [Runions et al. 2007].

Recently artists and designers have begun to adapt these biolog-
ically inspired algorithms to create complex sculptures that can
be 3D printed. Notably Jessica Rosenkrantz and Jesse Louis-
Rosenberg founded Nervous System, a design agency that uses
computer simulations to generate jewelery and household goods in-
spired by biological structures [Rosenkrantz 2015].

3 Technical Description

3.1 Simulation

The leaf venation patterns modeled in this project are based on the
article Modeling and visualization of leaf venation patterns written
by Runions et al. [2005]. Simulations are implemented in Java,
using the Processing library for simple 2D visualizations. In this
work, leaf venation patterns are algorithmically generated by mod-
elling three distinct processes:

1. Leaf Growth:Overall leaf growth affects the vein structure
and hormone distribution

2. Vein Growth: Veins tend to grow towards hormone (auxin)
sources along the surface of the leaf

3. Auxin Placement: Location and number of hormone sources
are time variant and dependent on proximity to existing veins

A map of feedback between these processes is shown in Figure 2.
The algortihm for leaf venation simulates each of these three pro-
cesses in an iterative loop. Leaf blade growth refers to the over-
all size and shape of the leaf, and is the first process modelled in
the loop. For these simulations, it is assumed that the shape and
growth patterns of the leaf are already known. I chose to imple-
ment marginal growth, in which the edge of the leaf scales out-
wardly from the edge at a constant rate. The existing vein nodes
remain in place and vein edges to not expand as the leaf grows.

Figure 2: Biological processes being modeled, figure from Runions
et al. [2005]

Auxin source placement is responsible for setting the targets that
the veins will grow toward. Each auxin represents a pool of nutri-
ents that attracts veins, and can be used up when veins come too
close. The placement of auxins adds an element of randomness
to the simulation and is the primary reason that simulations using
the same parameters provide results that are qualitatively similar,
but still unique. This placement is handled with a modified dart-
throwing algorithm [Cook 1986; Mitchell 1987].

Finally vein development is controlled by proximity to auxins.
Each source is assumed to influence the closest vein node. Vein
nodes with will grow towards neighboring sources by adding a new
edge and and node in the average direction of influential sources.
The length of these new edges is a system parameter used to con-
trol the growth rate of the veins.

3.1.1 Leaf Growth

The initial leaf shape is input by the user a series of coordinates.
Each coordinate is stored as a node, and neighboring nodes are
connected by edges. The leaf shape is assumed to be a closed
2D polygon, but may contain both convex and concave portions
along the perimeter. On each iteration of the simulation loop, all
nodes are uniformly scaled by a set factor. With modification, this
model could be expanded to include nonuniform growth by defin-
ing growth in the horizontal and vertical directions as a function of
position.

3.1.2 Auxin Placement

During the initialization, a set number of auxins are placed within
the initial shape of the leaf. This placement is accomplished with
a modified dart-throwing algorithm [Cook 1986; Mitchell 1987].
First a random point is generated, and then tested for compatibility.
The first requirement is to determine whether the randomly gener-
ated point is contained within the shape of the leaf. This test re-
quires an implementation of the well known point in polygon prob-
lem. For the point in question, a ray is drawn horizontally to the
right. Each edge of the leaf is tested to determine whether it inter-
sects the ray, and the total number of intersections is counted. An
odd number correlates to a point inside the leaf and an even number

correlates to a point outside the leaf. This method is applicable to
both concave and convex polygon structures.

If the point is inside the leaf, the point is tested for proximity to ex-
isting auxins and vein nodes. An allowable minimum birth distance
is set for both veins and auxins. If the new auxin is both inside the
leaf and sufficiently far away from other auxins and vein nodes, it
is placed into the system. This testing process is continued until
enough suitable auxins are found. The user sets a parameter for the
number of auxins to be added with each iteration of the simulation.
The density of auxins greatly affects the venation process.

3.1.3 Vein Growth

The vein structure is initialized as a small root system at the bottom
of the leaf. This root consists of a vein node at the origin a second
node vertically above the origin, offset by one edge length. A vein
edge connects these two nodes. On each iteration of the simulation
loop, each auxin is assumed to influence the closest vein node. An
array of influential of auxins is stored for each vein node. For all
nodes with at least one influential auxin, a new vein node and edge
are added.

The placement of the new vein node, v’, is defined in relation to the
position of the existing vein node, v, according to

v′ = v +D
~n

~‖n‖
, where ~n =

∑
s∈S(v)

s− v
‖s− v‖ .

Here D is a system parameter that is used to set the edge length
of the vein. Effectively, this is used to control the rate at which
veins grow relative to the leaf. The set of influential auxins for each
vein is denoted by S(v), and the position of each auxin in the set
is denoted by s. This equation ensures that every new vein node is
placed a fixed distance away from its parent in the average direction
of influential auxins.

At the end of the simulation loop, all auxins are tested to determine
their proximity to new vein nodes. If a vein node is found within the
set kill distance for auxins, the auxin is considered to be depleted
and is removed for the system. Once removed, the auxin no longer
influences any of the vein nodes.

As a final step to create a more visually compelling vein structure,
variable widths are assigned to each vein edge. The goal is to cre-
ate a tapered effect, with older veins closer to the root generally
thicker, but tapering down in size as growth continues. To accom-
plish this goal, edge widths are set by using a variation of Murray’s
law [Murray 1926]. Edges connected terminal nodes are first as-
signed a minimal width. Moving up to the root from these terminal
nodes, edge widths are maintained until a branching structure is
reached. At each branching structure, the width (r) of the parent
edge is defined by the width of its children as

rnparent =
∑
i

rnchild,i.

This is a slight variation from the model used by Runions et al.
[2005]. Their model assumed all branches were bifurcations (i.e.
only two child edges could originate from a single parent node).
Based on the original observations of Murray, the scaling factor is
set to n=3. However, this factor can be viewed as a system param-
eter and empirically adjusted to create different visual effects in the
venation patterns.

3.2 Fabrication

In order to fabricate physical artifacts using simulation results, the
resulting vein graph must be first converted into a suitable 3D CAD
format. This CAD model can then be fabricated using a variety of
3D printing techniques. For this project, I used a low cost stere-
olithography method to quickly generate high resolution objects.

3.2.1 3D Printing Process

I chose to use stereolithography for this project due to its ability
to quickly fabricate small components with high resolution. Stere-
olithography is a process by which high intensity light is used to se-
lectively polymerize a liquid precursor in order to gradually form a
solid object. Conventionally, this is accomplished by rastering a UV
laser over a 2D surface in a serial process. For this project, I used
a variant called Digital Mask Projection Stereolithography (DMP-
SL). For DMP-SL, a visible light projector is used in a highly par-
allel process to selectively cure ˜2 million individual voxels simul-
taneously. This process is shown schematically in Figure 3.

Figure 3: In the process of Digital Mask Projection Stereolithogra-
phy (DMP-SL) visible light is used to selectively polymerize liquid
precursor to form a solid object, one layer at a time.

As shown in Figure 3, a Digital Mirror Device (DMD) is used to
project light to cure each layer of liquid precursor. After polymer-
ization, the part is raised by one layer height and the next layer is
cured. This process continues until all layers have been polymer-
ized. Typical layer height is 25− 50µm and typical XY resolution
is 35µm. Because an entire layer is cured concurrently, the build
time is dependent only on the height of the object. Typical build
time is 25mm/hr, dependent on the properties of the polymer used
for printing.

3.2.2 Preparation for 3D Printing

In order to 3D print the vein graph as a physical object, I used two
different CAD programs to prepare a 3D mesh. The Java program
used to simulate vein growth exports the geometry of the leaf and
veins as a Python script designed to run in the open-source CAD
program, FreeCAD (Version 0.13). This Python script consists of
two sections. The first is used to generate a 3D structure of the vein

patterns. Each vein node is represented as a sphere with diame-
ter corresponding to the edge width of its parent. Because of the
large overlap between neighboring spheres, the vein edges are not
explicitly modelled as part of the 3D structure. Finally the shape
of the leaf is added as a prism formed by extruding the 2D ge-
ometry of the leaf shape. Initially, I attempted to create a union
of all components (˜12,000), but was unable to complete this task
using FreeCAD due to memory limitations (16GB of RAM). In-
stead, I exported the model as 12 separate sections (each consist-
ing of ˜1,000 objects), saving each piece in Standard Tessellation
Language (STL) format. The STL format creates a 3D mesh com-
posed of distinct lists of points, lines and triangles. At this stage,
the exported STL files contain many intersecting faces and require
significant storage (˜1GB). This process is shown in Figure 6a.

In order to reduce file size and create a single watertight mesh,
I used Autodesk Meshmixer (Version 10.7.84). The collection
of STLs from FreeCAD are combined by taking the union of all
meshes and then applying a smoothing operation in order to cre-
ate a more organic aesthetic. I added a small cylindrical base to
allow the model adhere to the build platform more securely during
printing. Finally, I scaled the the partto the desired print size. The
resulting STL is relatively small (˜5MB). This result of this process
is shown in Figure 6b.

As the last step in the pipeline, Envision Labs Creation Workshop
is used to prepare the STL for 3D printing by slicing it horizontally
into a stack of images. For each layer of the printed object, the
corresponding image is sent to the projector. A variety of control
parameters are set in Creation Workshop that can affect the quality
of the print. These include the duration of light for each layer, the
height of each layer and the lift distance to remove each layer from
the build substrate. This software is shown in Figure 6c.

4 Results

I was able to successfully implement the leaf venation model de-
scribed by Runions et al. [2005] for open venation patterns. I used
this model to generate animations of the growth process in leaves. I
was also able to use this model to generate 3D CAD models for 3D
printing.

4.1 Animation

Figure 4 shows an example of several frames from one of the leaf
venation simulations. As described in Section 3.1, the outline of
the leaf expands uniformly with each iteration of the simulation.
At each iteration, auxins are randomly added to suitable locations.
These can be seen as blue circles in 4. Every time a new simulation
is run with these parameters, the results are qualitatively similar
in the type of branching, but unique due to the random placement
of auxins. In these images, it can be seen that new veins tend to
branch off at approximately right angles. This is a natural behavior
that is shown to emerge through a set of very simple rules in this
simulation.

By varying the physical parameters used in the model, it is possible
to create a large range of qualitatively different venation patterns.
This is shown in Figure 1, where each panel is the final result of
a different simulation. A compilation video of these simulations is
included with the supplemental information (SV1). In each case,
all parameters are held constant except for the vein growth rate
(as controlled by the vein edge length parameter). As the the vein
growth rate is increased, more chaotic vein patterns are formed (d).
For lower vein growth rates, a smaller number of dominant, thicker
veins tend to form (a).

Figure 4: Growth of a venation pattern during simulation, where
f is the frame number: (a) f=150, (b) f=300, (c) f=450, (d) f=600,
(e) f=750, and (e) f=900

4.2 3D Printed Objects

Figure 5 shows an example leaf that was printed using the DMP-
SL process described in Section 3.2.1. The leaf is printed using
MakerJuice G+ resin, an inexpensive that costs $55 for 1L. Because
each leaf has a volume of approximately 1mL, the material cost
of each leaf is only $0.06. The build time is determined by the
height of the leaf. With a height of 50mm, build time is 2 hours.
However, due to their thin nature, many leaves (5) can be stacked
together on the build platform. This means that multiple leaves can
be produced in the same amount of time as a single structure. A
video showing the build process is included with the supplemental
information (SV2).

Figure 5: (a) 3D print of leaf strucutre prior to removal prior to re-
moval from build platform. (b) Backlight photograph of 3D printed
leaf structure.

Figure 6: CAD/CAM Pipeline used to ready vein graph for 3D
printing: (a) FreeCAD is used via Python scripting to create a col-
lection of STL files, (b) Meshmixer is used to take the union of STL
files, generating a single watertight mesh of reduced size, (c) Cre-
ation Workshop is used to convert the STL into horizontal slices and
to control the 3D printer

5 Conclusions

This project shows that biological simulations are a viable way to
quickly generate complex 3D structures. By automating these de-
sign processes, it becomes affordable to 3D print unique objects. In
this example, the pieces created are only of aesthetic value. How-
ever, expanding these algorithmic techniques could allow designers
to create quickly fabricate practical components (e.g. lightweight
support structures that make efficient use of materials). Ultimately
these types of algorithmic tools could drastically reduce the cost of
designing both functional and aesthetic objects. As these tools gain
traction, the role of the designer may shift away from designing in-
dividual object and towards developing systems that can be used to
design a family of objects.

References

COOK, R. L. 1986. Stochastic sampling in computer graphics.
ACM Trans. Graph. 5, 1 (Jan.), 51–72.

COSTES, E., SMITH, C., RENTON, M., GUÉDON, Y.,
PRUSINKIEWICZ, P., AND GODIN, C. 2008. MAppleT: sim-
ulation of apple tree development using mixed stochastic and
biomechanical models. Functional Plant Biology 35, 10, 936.

DALE, H., RUNIONS, A., HOBILL, D., AND PRUSINKIEWICZ, P.
2014. Modelling biomechanics of bark patterning in grasstrees.
Annals of Botany 114, 4 (aug), 629–641.

MITCHELL, D. P. 1987. Generating antialiased images at low
sampling densities. SIGGRAPH Comput. Graph. 21, 4 (Aug.),
65–72.

MURRAY, C. D. 1926. The Physiological Principle of Minimum
Work: I. The Vascular System and the Cost of Blood Volume.
Proc. Natl. Acad. Sci. U.S.A. 12, 3 (Mar), 207–214.

ROSENKRANTZ, J., AND LOUIS-ROSSENBERG, J., 2011. Nervous
system. http://n-e-r-v-o-u-s.com/index.php.

ROSENKRANTZ, J., 2011. Hyphae lamps - an infinite series of
lighting designs. http://n-e-r-v-o-u-s.com/blog/
?p=1701.

RUNIONS, A., FUHRER, M., LANE, B., FEDERL, P., ROLLAND-
LAGAN, A.-G., AND PRUSINKIEWICZ, P. 2005. Modeling and
visualization of leaf venation patterns. In ACM SIGGRAPH 2005
Papers, ACM, New York, NY, USA, SIGGRAPH ’05, 702–711.

RUNIONS, A., LANE, B., AND PRUSINKIEWICZ, P. 2007. Model-
ing Trees with a Space Colonization Algorithm. In Eurographics
Workshop on Natural Phenomena, The Eurographics Associa-
tion, D. Ebert and S. Merillou, Eds.

http://n-e-r-v-o-u-s.com/index.php
http://n-e-r-v-o-u-s.com/blog/?p=1701
http://n-e-r-v-o-u-s.com/blog/?p=1701

